...
BMI_1kgph3_chr16_snps_summarystat_2024.txt
3.1- Base Data
We will use as the base data part of GWAS Anthropometric 2015 BMI summary statistics ( https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382211/), made available by the GIANT consortium and were extracted from their online portal
...
Some additional codes to try (need to download and install required items following instructions):
8- Additional Commands
Running PRSice2
Code Block | ||
---|---|---|
| ||
#### PRSice2 #### ##Some quality control steps before using summary statistics file in PRSice2 ## *** make sure to review any documents that come with the summary statistics to understand how the summary statistics were derived and what the column names stand for *** # In R: ss=read.table("BMI_1kgph3_chr16_snps_summarystat_2024.txt",header=T) nrow(ss) #[1] 68385 head(ss) summary(ss$INFO) #imputation quality summary(ss$N) #N for each SNP in source GWAS summary(ss$Freq1.Hapmap) #minor allele frequency for each SNP nrow(ss[ss$INFO<0.8,]) #[1] 199 nrow(ss[ss$N<0.5*max(ss$N),]) #[1] 2629 nrow(ss[ss$Freq1.Hapmap<=0.01 | is.na(ss$Freq1.Hapmap),]) #[1] 1590 #Some quality control for imputation quality, N, and minor allele frequency: ss1=ss[ss$INFO>0.8 & ss$N>0.5*max(ss$N) & ss$Freq1.Hapmap>0.01 & !is.na(ss$Freq1.Hapmap),] nrow(ss1) #[1] 64933 colnames(ss1)<-c("SNP","A1","A2","Freq1.Hapmap","BETA","SE","P","N","INFO") head(ss1) write.table(ss1,"BMI_1kgph3_chr16_snps_summarystat_2024_short.txt", col.names=T, row.names=F, quote=F, sep='\t') ##Now we are ready to try PRSice2! ##Need to set up the following modules in R for PRSice2 to run properly: module load lang/R/3.5.1-Python-3.8.5-Anaconda3-2020.11 R --vanilla library(ggplot2) library(optparse) #may need to install this package manually library(methods) library(tools) library(data.table) library(grDevices) library(RColorBrewer) q() ## Linux -- Using our tutorial files: Rscript PRSice.R --prsice ./PRSice_linux --base BMI_1kgph3_chr16_snps_summarystat_2024_short.txt --target 1kgph3_chr16 --pheno 1kgph3_dummybmi20200804.txt --pheno-col dummybmi --thread 1 --stat BETA --pvalue P --binary-target F --out dummybmi_nocov2024 ## Windows (in R) -- Using our tutorial files: system("Rscript.exe PRSice.R --prsice ./PRSice_win64.exe --base BMI_1kgph3_chr16_snps_summarystat_2024_short.txt --target 1kgph3_chr16 --pheno 1kgph3_dummybmi20200804.txt --pheno-col dummybmi --thread 1 --stat BETA --pvalue P --binary-target F --out dummybmi_nocov2024") ## Linux -- Adding a covariate: Rscript PRSice.R --prsice ./PRSice_linux --base BMI_1kgph3_chr16_snps_summarystat_2024_short.txt --target 1kgph3_chr16 --pheno 1kgph3_dummybmi20200804.txt --pheno-col dummybmi --cov 1kgph3_dummybmi20200804.txt --cov-col sex --thread 1 --stat BETA --pvalue P --binary-target F --out dummybmi_sexcov2024 ## Windows (in R) -- Adding a covariate: system("Rscript.exe PRSice.R --prsice ./PRSice_win64.exe --base BMI_1kgph3_chr16_snps_summarystat_2024_short.txt --target 1kgph3_chr16 --pheno 1kgph3_dummybmi20200804.txt --pheno-col dummybmi --cov 1kgph3_dummybmi20200804.txt --cov-col sex --thread 1 --stat BETA --pvalue P --binary-target F --out dummybmi_sexcov2024") ##Additional Notes/Examples: ##This is sample script (***Need to change the actual file names***): #Rscript workdir/PRSice.R --dir workdir --prsice ./workdir/PRSice_linux --base workdir/source_gwas_sumstat_info_9_prsicein.txt --target indir/target_gwas_cleaned_plink --bar-levels 5e-8,0.00001,0.00005,0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.2,0.3,0.4,0.5,1 --seed 1234 --perm 10000 --fastscore --all-score --no-regress T --out outdir/target_gwas_cleaned_source_gwas_prs ## PRSice2 within R on Windows (from tutorial): system("Rscript.exe PRSice.R --prsice ./PRSice_win64.exe --base TOY_BASE_GWAS.assoc --target TOY_TARGET_DATA --thread 1 --stat OR --binary-target T") |
Running PRS-CS
Code Block | ||
---|---|---|
| ||
## PRS-CS #need effective sample size of source GWAS (neff =2*N_cases*N_controls/(N_cases+N_controls)) python workdir/PRScs/PRScs.py --ref_dir=workdir/ldblk_1kg_eur --bim_prefix=indir/target_gwas_cleaned_plink --sst_file=workdir/source_gwas_sumstat_prscsin.txt --n_gwas=[neff] --seed=1234 --out_dir=outdir/target_gwas_source_gwas_sumstat_prscsout # Merge sumstat outputs from PRS-CS chr1-22 in R: R mci<-c() mcall<-c() for (i in 1:22) { mci<-read.table(paste("outdir//target_gwas_source_gwas_sumstat_prscsout_pst_eff_a1_b0.5_phiauto_chr",i,".txt",sep=""),header=F) mcall<-rbind(mcall,mci) } colnames(mcall)<-c("CHR","SNP","BP","A1","A2","B") mcalla=subset(mcall,select=c("SNP","A1","B")) colnames(mcalla)<-c("SNP","A1","Score") write.table(mcalla,"outdir//target_gwas_source_gwas_sumstat_prscsout_pst_eff_a1_b0.5_phiauto_chr1-22.raw", row.names=F, col.names=T, quote=F, sep='\t') # Run polygenic scoring in PLINK: plink --bfile indir/target_gwas_cleaned_plink --score outdir/target_gwas_source_gwas_sumstat_prscsout_pst_eff_a1_b0.5_phiauto_chr1-22.raw --out outdir/target_gwas_source_gwas_sumstat_prscsout |
...
9- References
- Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J; Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson N, Daly MJ, Price AL, Neale BM. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 2015; 47:291–295. PMID: 25642630 PMCID: PMC4495769 DOI: 10.1038/ng.3211
- Choi, S.W., Mak, T.S. & O’Reilly, P.F. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020; 15: 2759–2772. https://doi-org.myaccess.library.utoronto.ca/10.1038/s41596-020-0353-1
- Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019 Apr 16;10(1): 1776. PMID: 30992449 PMCID: PMC6467998 DOI:10.1038/s41467-019-09718-5
- Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015; 518:197-206. PMID: 25673413 PMCID: PMC4382211 DOI: 10.1038/nature14177
- Ni G, Zeng J, Revez JA, Wang Y, Zheng Z, Ge T, Restuadi R, Kiewa J, Nyholt DR, Coleman JRI, Smoller JW, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Yang J, Visscher PM, Wray NR. A comparison of ten polygenic score methods for psychiatric disorders applied across multiiple cohorts. Biol Psychiatry. 2021 Nov 1; 90(9): 611–620. PMID: 34304866 URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500913/
- Pain O, Glanville KP, Hagenaars SP, Selzam S, Fürtjes AE, Gaspar HA, Coleman JRI, Rimfeld K, Breen G, Plomin R, Folkersen L, Lewis CM. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 2021 May 4;17(5):e1009021. doi: 10.1371/journal.pgen.1009021. eCollection 2021 May. PMID: 33945532 URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121285/
- Speed D, Holmes J, Balding DJ. Evaluating and improving heritability models using summary statistics. Nature Genetics, 2020; 52: 458–462. PMID: 32203469 DOI: 10.1038/s41588-020-0600-y
...