Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

1- Overview 

This is a guide for an introductory analysis to 1) construct a polygenic risk score (PRS) using the base data (GWAS summary statistics, particularly effect-sizes and P-values, generally public available) via a clumping and thresholding method (C + T); and 2) test the constructed PRS for prediction using the target data (PLINK binary data format). In general, it is the ‘user’ data).

2- Learning Objectives

  1. Apply quality control measures to base/target sample prior to PRS analysis;
  2. Perform PRS analysis (hands-on);
  3. Understand the graphs and outputs (hands-on)

3-

...

Materials

Ideally for PRS analyses, you would be using the genome-wide genotype data. Here we use base data containing summary statistics and target data containing genotypes for chromosome 16 as an example to demonstrate the workflow for prediction of simulated body mass index (BMI) data. The procedure described below will be the same for the genome-wide dataset. All the materials required for this workshop are attached here. Relevant materials for this workshop are as follows:

...

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files#BMI_and_Height_GIANT_and_UK_BioBank_Meta-analysis_Summary_Statistics).

3.1.1- QC for Base data:1)-

  1. Check SNPs Heritability: h2SNP>0.05

...

...

    • Speed et al, Nature Genetics, 2020)

...

  1. The effect allele must be known. Both Base and Target datasets should have the same effect allele.

...

  1. Filter out SNPs with MAF < 0.01 and INFO < 0.8.


Code Block
### BMI_1kgph3_chr16_snps_summarystat.txt:
 
# With the following columns: “SNP” = marker ID, “A1” = minor allele or effect allele, “A2” = major allele or reference allele, “Freq1.Hapmap” = allele frequency according to Hapmap, “b” = effect estimate for the minor allele, “se” = standard error of the effect estimate, “p” = p-value, “N” = sample size
 
        SNP A1 A2 Freq1.Hapmap       b     se      p      N
1 rs1000014  G  A       0.8000 -0.0055 0.0049 0.2617 233462
2 rs1000047  C  T       0.6917  0.0019 0.0040 0.6348 233959
3 rs1000077  C  G       0.4833  0.0006 0.0038 0.8745 220681
4 rs1000078  A  G       0.7000 -0.0031 0.0041 0.4496 232588
5 rs1000100  A  T       0.4167  0.0006 0.0040 0.8808 233753
6 rs1000174  A  G       0.3417 -0.0025 0.0052 0.6307 150418

...

3.2.1- QC for Target data: 1)-

  1. Check if your Target data is in the same genome build as Base data.

...

  1. Basic QC: e.g., geno >0.99, mind <0.02, HWE P>1x10-6, 3SD HET, MAF >0.01, INFO >0.8. Also, remove indels and multi-allelic SNPs.

...

  1. Avoid sample overlap, as well as high degree of relatedness between individuals of Base and Target data.

...

  1. Check strand and allele calls


Code Block
### 1kgph3_chr16.bed:		
# binary plink pedigree genotype file; do not try to open this file
 
### 1kgph3_chr16.bim (as appearing in R):
# with 277,663 biallelic markers (SNPs or Ins/Del markers) – 6 columns without column names: “V1”=chromosome, “V2”=marker ID, “V3”=genetic distance, “V4”=chromosomal position in bp, “V5”=Allele1, “V6”=Allele2
 
  V1          V2 V3    V4 V5       V6
1 16 rs185537431  0 60778  A        G
2 16 rs377548396  0 62569  A        G
3 16 rs368745239  0 66640  T        G
4 16 rs187053456  0 70765  A        C
5 16 rs193118147  0 70767  A        G
6 16 rs201639477  0 75246  C CTTTTTTT
 
### 1kgph3_chr16.fam (as appearing in R):
# with 476 individuals – 6 columns without column names: “V1”=Family ID, “V2”=Individual ID, “V3”=Father ID, “V4”=Mother ID, “V5”=Sex (Male=1, Female=2), “V6”=Affected status (Yes=2, No=1, Unknown=-9)
 
       V1      V2 V3 V4 V5 V6
1 HG00096 HG00096  0  0  1 -9
2 HG00097 HG00097  0  0  2 -9
3 HG00099 HG00099  0  0  2 -9
4 HG00101 HG00101  0  0  1 -9
5 HG00102 HG00102  0  0  2 -9
6 HG00103 HG00103  0  0  1 -9
 
### 1kgph3_dummybmi20200804.csv (as appearing in R):
# with the columns with column names: “V1”=Family ID, “V2”=Individual ID, “V3”=Father ID, “V4”=Mother ID, “V5”=Sex, “V6”=Affective status, “dummybmi”=phenotype of interest, “Sex” (male=1, female=0)
 
V1        V2        V3   V4   V5   V6   dummybmi     sex
HG00096   HG00096   0    0    1    -9   13.42457034    1
HG00097   HG00097   0    0    2    -9   11.29648997    0
HG00099   HG00099   0    0    2    -9   10.98411446    0
HG00101   HG00101   0    0    1    -9   8.268308741    1
HG00102   HG00102   0    0    2    -9   11.1241505     0


3.3- Required Softwares 


4- Quality Control Checklist 

The Base and Target data must be matching for the following items:

  1. SNP IDs (for this workshop, both base and target datasets have rsIDs)
    • chromosome and map positions (we can double-check base vs target datasets if that information is available)
  2. allele 1 and allele 2 calls
    • ambiguous SNPs
    • strand
    • allele 1 vs allele 2


For the workshop we are using simulated data (see above). For this dataset, we will only check strand and allele calls.

...

### merging base (GWAS summary stat) with target (GWAS) bim file to check strands and allele calls. The expected outputs for "nrow" are shown.


Code Block
R --vanilla  ## only if you are running R in your computer terminal
 
kg=read.table("1kgph3_chr16.bim",header=F)
bmi=read.table("BMI_1kgph3_chr16_snps_summarystat.txt",header=T)
 
nrow(kg)    ##277,663
head(kg)
 
nrow(bmi)    ##68,385
head(bmi)
 
bmikg=merge(bmi,kg,by.x="SNP",by.y="V2")    # merging step
 
nrow(bmikg)    ##68,385
head(bmikg)

...

Code Block
bmikg2=rbind(bmikg1a,bmikg1b)
 
nrow(bmikg2)    #55,752
 
head(bmikg2)
 
## Saving the base-cleaned-alleles file to be used later
write.table(bmikg2,"BMI_unambiguousSNPsposstrand-B_AllelesV5V6_20200226.txt",quote=F,sep='\t',col.names=T,row.names=F)
 
## Setting up and saving the file for clumping in the next step
bmikg2s=subset(bmikg2,select=c("SNP","p"))
colnames(bmikg2s)<-c("SNP","P")
write.table(bmikg2s,"BMI_SNPs_P_forclumping.txt",quote=F,sep='\t',col.names=T,row.names=F)


5- Calculation of PRS via clumping and thresholding

The following procedure is using the cleaned file generated above.

Tip: Effect sizes given as odds ratios (OR) will need to be converted to Beta (B) using the natural logarithm of the OR. In this way, the PRS can be computed using summation. (The effect estimates can be transformed from B back to OR afterwards).


5.1- CLUMPING using PLINK

### The most commonly used method for computing PRS is clumping and thresholding (C+T). Before calculating PRS, the variants are first clumped, and variants that are weakly correlated (r2) with one another are retained. The clumping step prunes redundant correlated effects caused by linkage disequilibrium (LD) between variants. Thresholding will remove variants with a p value larger than a chosen level of significance (default: 0.0001).

...

Code Block
bmikg2=read.table("BMI_unambiguousSNPsposstrand-B_AllelesV5V6_20200226.txt",header=T)
 
clumped=read.table("1kgph3_chr16_test_clumped_1.clumped",header=T)
nrow(clumped)
 
bmikg3=merge(bmikg2,clumped,by="SNP",sort=F)
 
nrow(bmikg3)    ##4651


5.2- THRESHOLDING using R

### As an example, we will use either (a) p-value threshold of 0.5, or (b) a range of p-value thresholds from base GWAS summary statistics to select SNPs for polygenic risk scoring in the target GWAS dataset

...

Code Block
## writing input file for generating polygenic risk scores
 
bmikg3b=subset(bmikg3,select=c("SNP","V5","B"))
colnames(bmikg3b)<-c("SNP","A1","Score")
write.table(bmikg3b,"1kgph3_chr16_test_clumped_1_nothreshold.raw",col.names=T,row.names=F,quote=F,sep='\t')
 
 
## writing file for filtering based on p-values in the range_list.txt file above
 
bmikg3c=subset(bmikg3,select=c("SNP","P"))
write.table(bmikg3c,"1kgph3_chr16_test_clumped_1_nothreshold.snppvalues",col.names=T,row.names=F,quote=F,sep='\t')



5.3- GENERATING THE POLYGENIC RISK SCORES 

...

# The command above will generate one output file with extension "*.profile"


Code Block
### 1kgph3_chr16_profile_5_20200226.profile:
## with columns: FID=Family ID, IID=Individual ID, PHENO=phenotype, CNT=number of SNPs used for scoring, CNT2=number of named (effect) alleles for each subject, SCORE=polygenic risk score for each subject
 
      FID       IID  PHENO    CNT   CNT2        SCORE
  HG00096   HG00096     -9   6508   1107 -2.34634e-05
  HG00097   HG00097     -9   6508   1193  0.000309573
  HG00099   HG00099     -9   6508   1156  3.56331e-05
  HG00101   HG00101     -9   6508   1167 -4.76951e-05
  HG00102   HG00102     -9   6508   1157 -3.64935e-05


### Example (b) using a range of p-value thresholds

...

# The command above will generate eight output files with extension "*.profile"


Code Block
### For example, 1kgph3_chr16_profile_20200226.0.001.profile:
## with columns: FID=Family ID, IID=Individual ID, PHENO=phenotype, CNT=number of SNPs used for scoring, CNT2=number of named (effect) alleles for each subject, SCORE=polygenic risk score for each subject
 
      FID       IID  PHENO    CNT   CNT2        SCORE
  HG00096   HG00096     -9    148     45 -0.000618919
  HG00097   HG00097     -9    148     40   0.00219797
  HG00099   HG00099     -9    148     44   0.00117297
  HG00101   HG00101     -9    148     47  -0.00123784
  HG00102   HG00102     -9    148     46  -0.00163041


6- Applications of PRS scores


6.1- REGRESSION ANALYSIS 


## In R:

...

Code Block
prs1phen=read.csv("test_clump_1_prs_5.csv",header=T)
head(prs1phen)
 
lmprs<-lm(data=prs1phen, dummybmi~SCORE + sex)
summary(lmprs)


# Plotting6.2- PLOTTING


Code Block
## Histogram showing distribution of polygenic risk scores (shown for p-value threshold of 0.5 from Example (a))
pdf("Histogram_testscore_pT_5.pdf")
hist(prs1phen$SCORE, breaks=100, main = paste("Distribution of PRS scores (n =", length(prs1phen$SCORE), ")"))
dev.off()
 
## Scatterplot of BMI vs PRS (shown for p-value threshold of 0.5 from Example (a))
pdf("Scatterplot_dummybmi_vs_PRS_pT_5.pdf")
plot(prs1phen$SCORE,prs1phen$dummybmi)
abline(lm(prs1phen$dummybmi ~ prs1phen$SCORE), col = "red",
lty = 1, lwd = 1)
dev.off()
 
 
# Plots of prediction R-squared values vs p-value thresholds (for Example (b))
prs_files  <- list.files(pattern = "1kgph3_chr16_profile_20200226.*.*.profile$");
prs_list <- lapply(prs_files, function(rr) read.table(rr, head=T))
r_squared<-NA
for (j in 1:length(prs_list)){
prs1phen=merge(prs_list[[j]] ,phen, by.x="FID", by.y="V1")
lmprs<-lm(data= prs1phen, dummybmi~SCORE + sex)
r_squared[j]<-summary(lmprs)$r.squared
}
 
p_threshold <- as.numeric(sapply(sapply(prs_files, function(rr) strsplit(rr, "_20200226*\\.")[[1]][[2]]), function(ee) strsplit(ee, ".profile")[[1]]))
 
## Lineplot of prediction R-squared values vs p-value thresholds
pdf("Lineplot_R-squared_vs_p-value_threshold.pdf")
plot(p_threshold, r_squared, xlab = "P-value threshold", ylab="Prediction R-squared")
lines(p_threshold, r_squared);
abline(v=p_threshold[which.max(r_squared)], col=2)
dev.off()
 
 
## Barplot of prediction R-squared values vs p-value thresholds -- colour gradient from blue for lowest R-squared value to red for highest R-squared value; legend showing R-squared values in the order of the p-value thresholds
rankfac <- rank(r_squared)
rbPal <- colorRampPalette(c('blue','red'))
Col <- rbPal(length(rankfac))[as.numeric(cut(rankfac,breaks = length(rankfac)))]
pdf("Barplot_R-squared_vs_p-value_threshold_bluetored.pdf")
barplot(r_squared, names.arg=p_threshold, xlab = "P-value threshold", ylab="Prediction R-squared",col=Col, legend=round(r_squared, digits=4), args.legend=list(title="R-squared"), xlim=c(0,12))
dev.off()

...



7- Additional resources for PRS analysis

Software for alternative PRS methods:

Base data:

Additional tutorial or guides:

...


8- References

...

  • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J; Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson N, Daly MJ, Price AL, Neale BM. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.  Nature Genetics, 2015; 47:291–295PMID: 25642630  PMCID: PMC4495769  DOI: 10.1038/ng.3211

...

  • Choi, S.W., Mak, T.S. & O’Reilly, P.F. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc.  2020; 15

...

  • : 2759–2772

...